`	
-	
2	
-	
σ	
2	
١	Į
Ċ	
2	
+	
Ξ	
2	
3	
0	
3	
>	
3	
7	
٠	۰
2	
+	
+	
2	

STUDY MODULE DESCRIPTION FORM							
Name of the module/subject Adaptive Control				Code 1010532111010559181			
Field of study				Profile of study	Year /Semester		
Automatic Control and Robotics				(general academic, practical) general academic	1/1		
Elective path/				Subject offered in:	Course (compulsory, elective)		
Sma	art Aerospac	e and Autonomous Syste	ms	English	obligatory		
Cycle of study	y:		For	m of study (full-time,part-time)			
Second-cycle studies			full-time				
No. of hours					No. of credits		
Lecture:	30 Classes	s: - Laboratory: 30		Project/seminars:	4		
Status of the	course in the study	program (Basic, major, other)	(university-wide, from another fiel	d)		
	ļ	major		fror	n field		
Education areas and fields of science and art					ECTS distribution (number and %)		
technical	l sciences				4 100%		
	echnical scie	ances			4 100%		
	ecillical scie				4 10076		
Respons	ible for subje	ect / lecturer:	Re	sponsible for subject	/ lecturer:		
,	larcin Michałek D	0	,	Wojciech Adamski M.Sc. Eng] .		
	aciej.michalek@p	out.poznan.pl	email: wojciech.adamski@put.poznan.pl				
tel. 665-2848 Faculty of Computing			tel. 665-2846 Faculty of Computing				
,	3 Street, 60-965	Poznań	Piotrowo 3 Street, 60-965 Poznań				
Prerequisites in terms of knowledge, skills and social competencies:							
		Before taking this course, each s	stude	ent should poses basic know	edge in mathematical		
1 K n	owledge	statistics as well as control and s	syste	ems theory (state-space repr	esentation, input-output		
		description in continuous and dis approximation).					
2 Sk	ills	Student should also possess the ability to solve basic problems regarding the feedback control design for linear systems, should possess basic programming skills in Matlab-Simulink					
		environment, as well as the abili-	ty to	acquire additional information	n from various sources.		
3 So	ocial	The prospective student should be ready for team work activities during the course. Additionally, one should present following social skills: honesty, responsibility, persistence,					
СО	mpetencies	curiosity, creativity, appropriaten					
Assumptions and objectives of the course:							
- Extension of students' knowledge in the scope of design and application of mathematical models of plants/processes based on experimental data. Introduction to various techniques of parametric identification (with an emphasis on recursive methods) as well as their implementation and practical utilization.							
- Presentation of various adaptive control techniques with their exemplification in automation and robotics.							
- Teaching the implementation of selected basic adaptive control algorithms in a simulation environment.							
	•	o work in small teams.	J. U.	.goio iii a oiiiialadoii oiiv			
Study outcomes and reference to the educational results for a field of study							

Knowledge:

Faculty of Computing

- 1. Extended knowledge in the scope of parametric identification methods (batch-type and recursive-type estimators) for static and dynamic, linear and nonlinear plants/processes described in continuous-time and discrete-time domains; [K_W5]
- 2. Knowledge on selected model structures, basic methods of model validation, basic problems and their solutions related to practical application of identification methods (also in a closed-loop system); [K_W5]
- 3. Knowledge how to utilize the empirical models in the schemes of adaptive control; knowledge on basic techniques of adaptive recursive identification for parameter-varying plants/processes; [K_W5]
- 4. Knowledge and understanding of such terms as adaptation and adaptive control; [K_W7, K_W9]
- 5. Knowledge on objectives of adaptive control and properties of an ideal and a real adaptive control system; knowledge on a decision scheme of application of the adaptive control schemes; [K_W7, K_W9]
- 6. Basic theoretical and practical knowledge in the scope of selected adaptive control techniques like: Model-Identification Adaptive Control (self-tuning scheme), Multi-Model Adaptive Control with supervised switching, Model-Reference Adaptive Control, Lyapunov-based Adaptive Control, Parameters Scheduling method, and Active/Adaptive Disturbance Rejection Control; [K_W7, K_W9]
- 7. Awareness of necessity of supervision and safety nets application in the practical adaptive control systems; [K_W7, K_W9]

Skills:

- 1. Construction and validation of simple empirical models for single-input single-output (SISO) systems, and their practical utilization in adaptive control systems. [K_U10]
- 2. Ability to select a proper adaptive control algorithm and then to implement and commission it in a simulation environment. [K_U9, K_U22]
- 3. Multi-criteria evaluation of control quality for selected adaptive control methods. [K_U19]
- 4. Proper preparation and presentation of the results obtained during exercises. [K_U8]

Social competencies:

- 1. Ability to work in a small team taking responsibility for a given task. [K_K3]
- 2. Awareness of the necessity to professional approach to the technical problems presented during the course. [K_K4]

Assessment methods of study outcomes

- a) Lectures: Rating is decided upon the exam in the form of a selection test. The test comprise 30 meritorious questions. Four different answers A, B, C, and D are provided for every question, where two of them are correct and other two incorrect. Selection of two correct answers gives 1 point for a question. Selection of a single correct answer and leaving the second answer unselected gives 0.5 point for a question. Selection of single correct answer and single incorrect one implies zero points for a question. Other possibilities of answers selection (or their lack) imply zero points for a question. Positive rating TR from the test requires collecting at least 15.5 points. A final rating FR from the course is obtained according to the rule: FR = TR*0.7 + LR*0.3, where TR is a rating received from the selection test, and LR is a final rating received from the laboratory exercises (FR < 3.0 implies negative final mark from the course);
- b) Laboratory exercises: Final rating results from the overall quality assessment of the tasks realized by the students (assessment concerns technical quality of the obtained results, quality of the implementation details, and a defense of the tasks in the form of answers to detailed questions related to meritorious topics covered by the laboratory exercises).

Course description

The course covers the following topics:

- A) introduction to system identification and selected parametric identification techniques: model definition, types of models, identification as an alternative pragmatic approach to system modeling, properties of experimental models, selected structures of static and dynamic input-output models (in continuous-time and discrete-time domains), linearity of models with respect to parameters (linear regression), linearization of models with respect to parameters, simulator vs. one-step ahead predictor, general schemes of parametric identification for continuous-time and discrete-time model structures, selected stochastic estimation methods (Least Squares, Recursive Least Squares, Extended Recursive Least Squares), comments on implementation of recursive estimation methods, adaptive recursive identification for systems with time-varying parameters (forgetting factor, covariance resetting), selected practical issues concerning system identification (the State Variable Filters method, sampling time selection, persistent excitation property of input signals, problems of identification in a closed-loop system);
- B) introduction to adaptive control: a concept of adaptation and adaptive control, objectives of adaptive control, properties of an ideal and a real adaptive control system, a general scheme of an adaptive control system, remarks on applicability of adaptive systems, decision-making scheme of adaptive control application;
- C) selected schemes of adaptive control systems:
- Model-Identification Adaptive Control Self-Tuning Regulator (MIAC-STR) in the indirect approach using the certainty equivalence (CE) principle,
- Multi-Model Adaptive Control with supervised switching (MMAC),
- Model-Reference Adaptive Control (MRAC) in the direct approach with the gradient-based adaptation (MIT rule),
- Parameters/Gains Scheduling approach (P/GS)

Faculty of Computing

- Lyapunov-based adaptive control schemes (LbAC),
- Active/Adaptive Disturbance Rejection Control (ADRC),
- D) selected issues on practical implementation of adaptive systems,
- E) examples of commercial adaptive-control systems;

Lectures are performed using multimedia presentations illustrated with simulation examples and occasional mathematical derivations on the blackboard.

Laboratory exercises are organized in the form of fifteen 2sh-long meetings (1sh = school hour = 45min.). Exercises are conducted by 2-person student groups. Laboratory program covers the following topics (simulation exercises in the Matlab-Simulink environment using synthetic data):

- simple deterministic time-response methods of SISO system identification,
- parametric identification by the batch-type Least Squares method,
- recursive parametric identification by the Least Squares method for the time-invariant and time-varying parameters,
- adaptive control in the MIAC-STR scheme with a pole-placement controller synthesis,
- adaptive control in the MRAC scheme,
- adaptive control in the ADRC scheme.

Basic bibliography:

- 1. Robust and Adaptive Control with Aerospace Applications, E. Lavretsky, K. A. Wise, Springer-Verlag, London, 2013
- 2. Adaptive Control. Second Edition, K. J. Aström,, B. Wittenmark, Addison Wesley, 1995
- 3. System Identification, T. Söderström, P. Stoica, Prentice Hall International, Cambridge, 1989

Additional bibliography:

- 1. Adaptive Control. Algorithms, Analysis and Applications, I. D. Landau, R. Lozano, M. M'Saad, A. Karimi, Springer, London, 2011
- 2. Stable Adaptive Systems, K. S. Narendra, A. M. Annaswamy, Dover Publications, New York, 2005
- 3. Robust adaptive control, P. Ioannou, J. Sun, Dover Publications, New York, 2012
- 4. Adaptive Control Tutorial, P. Ioannou, B. Fidan, Advances in Design and Control, SIAM, Philadelphia 2006
- 5. System Identification. Theory for the User. Second Edition, L. Ljung, PTR Prentice Hall, New Jersey, 1999

Result of average student's workload

Activity	Time (working hours)
1. participation in laboratory exercises: 15 x 2 h	30
2. preparation to laboratory exercises: 15 x 1 h	15
3. participation in consultations related with the course	1
4. testing the designed control schemes (outside of laboratory classes)	8
5. participation in lectures	30
6. analysis of course materials and additional literature (10 pages = 1h), 100 pages	10
7. preparation to lectures and to final examination	20
8. participation in final examination	2

Student's workload

Source of workload	hours	ECTS
Total workload	116	4
Contact hours	63	2
Practical activities	38	1